

Miscanthus

REFERENCE MATERIAL

Pedigree

Institution: Repreve Renewables

Location: Tifton, GA

Scientific Name: *Miscanthus* × *giganteus*

Harvested: 2014

Received at INL: 2014

Sample Preparation: 1-inch chopped using a Class

Forage Chopper

Composition

Table 1. Chemical composition^a of Reference Miscanthus

%Structural Ash	%Extractable Inorganics	%Structural Protein %Extractable Protein		%Water Extracted Glucan ^b	
0.52	0.02	0.47	0.16	0.27	
%Water Extracted Xylan ^b	%Water Extractives Others	%EtOH Extractives	%Lignin	%Glucan	
0.10	2.61	2.05	20.41	40.79	
%Xylan	%Galactan	%Arabinan	%Acetic Acid	%Total	
22.01	1.11	2.86	3.87	97.25	

^aDetermined using NREL "Summative Mass Closure" LAP (NREL/TP-510-48087)

Proximate, Ultimate & Calorimetry

Table 2. Proximate, ultimate, and calorific values for Reference Miscanthus (reported on a dry basis)

Proximate ^a			Ultimate ^b						Calorimetry ^c	
%Volatile	%Ash	%Fixed Carbon	%Hydrogen	lydrogen %Carbon		%Oxygen	%Sulfur	HHV	LHV	
85.53	1.40	13.06	5.85	50.64	0.21	41.88	0.01	8493	7073	

^aProximate analysis was done according to ASTM D 5142-09

^bDetermined by HPLC following an acid hydrolysis of the water extractives

^bUltimate analysis was conducted using a modified ASTM D5373-10 method (Flour and Plant Tissue Method) that uses a slightly different burn profile. Elemental sulfur content was determined using ASTM D4239-10, and oxygen content was determined by difference

^cHeating values (HHV, LHV) were determined with a calorimeter using ASTM D5865-10

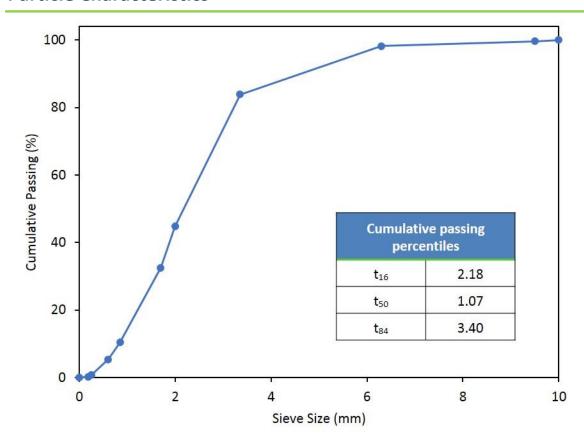

Elemental Ash

Table 3. *Elemental ash composition^a of Reference Miscanthus*

%Al as	%Ca as	%Fe as	%K as	%Mg as	%Mn as	%Na as	%P as	%Si as	%Ti as	%S as
Al ₂ O ₃	CaO	Fe ₂ O ₃	K ₂ O	MgO	MnO	Na₂O	P₂O₅	SiO₂	TiO₂	SO₃
0.29	18.34	1.20	6.44	9.03	1.11	0.18	3.58	52.31	0.02	3.15

^aDetermined as described in ASTM standards D3174, D3682 and D6349

Particle Characteristics

Figure 1. Cumulative passing percent of 1-inch Reference Miscanthus determined according to ANSI/ASAE S319.4 using a Ro-Tap test sieve shaker (Model RX-29, W.S. Tyler) and a 15 minute total sieving time. The cumulative passing percentile sieve sizes (e.g., t_{16}) were calculated by interpolation and represent theoretical sieve sizes that would retain 16, 50 or 84% of the particles by mass.

Contact

For questions regarding biomass material or analytical data please contact Dr. Garold Gresham at garold.gresham@inl.gov or 208-526-6684.